On the quantization of Poisson brackets

نویسنده

  • Joseph Donin
چکیده

In this paper we introduce two classes of Poisson brackets on algebras (or on sheaves of algebras). We call them locally free and nonsingular Poisson brackets. Using the Fedosov’s method we prove that any locally free nonsingular Poisson bracket can be quantized. In particular, it follows from this that all Poisson brackets on an arbitrary field of characteristic zero can be quantized. The well known theorem about the quantization of nondegenerate Poisson brackets on smooth manifolds follows from the main result of this paper as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brst Quantization of Quasi-symplectic Manifolds and Beyond

A class of factorizable Poisson brackets is studied which includes almost all reasonable Poisson manifolds. In the simplest case these brackets can be associated with symplectic Lie algebroids (or, in another terminology, with triangular Lie bialgebroids associated to a nondegenerate r-matrix). The BRST theory is applied to describe the geometry underlying these brackets and to develop a covari...

متن کامل

Double quantization on coadjoint representations of simple Lie groups and its orbits

Let M be a manifold with an action of a Lie group G, A the function algebra on M . The first problem we consider is to construct a Uh(g) invariant quantization, Ah, of A, where Uh(g) is a quantum group corresponding to G. Let s be a G invariant Poisson bracket on M . The second problem we consider is to construct a Uh(g) invariant two parameter (double) quantization, At,h, of A such that At,0 i...

متن کامل

An operadic approach to deformation quantization of compatible Poisson brackets

An analogue of the Livernet–Loday operad for two compatible brackets, which is a flat deformation of the bi-Hamiltonian operad is constructed. The Livernet–Loday operad can be used to define ⋆-products and deformation quantization for Poisson structures. The constructed operad is used in the same way, introducing a definition of operadic deformation quantization of compatible Poisson structures...

متن کامل

Ja n 19 96 Non - canonical Quantization of a Quadratic Constrained System ∗

We propose an alternative to Dirac quantization for a quadratic constrained system. We show that this solves the Jacobi identity violation problem occuring in the Dirac quantization case and yields a well defined Fock space. By requiring the uniqueness of the ground state, we show that for non-constrained systems, this approach gives the same results as Dirac quantization. After the formulation...

متن کامل

A Modification of Nambu’s Mechanics

The Poisson, contact and Nambu brackets define algebraic structures on C∞(M) satisfying the Jacobi identity or its generalization. The automorphism groups of these brackets are the symplectic, contact and volume preserving diffeomorphism groups. We introduce a modification of the Nambu bracket, which define an evolution equation generating the whole diffeomorphism group. The relation between th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008